Multi-Label Classification Method for Multimedia Tagging

نویسندگان

  • Aiyesha Ma
  • Ishwar K. Sethi
  • Nilesh V. Patel
چکیده

Community tagging offers valuable information for media search and retrieval, but new media items are at a disadvantage. Automated tagging may populate media items with few tags, thus enabling their inclusion into search results. In this paper, a multi-label decision tree is proposed and applied to the problem of automated tagging of media data. In addition to binary labels, the proposed Iterative Split Multi-label Decision Tree (IS-MLT) is easily extended to the problem of weighted labels (such as those depicted by tag clouds). Several datasets of differing media types show the effectiveness of the proposed method relative to other multi-label and single label classifier methods and demonstrate its scalability relative to single label approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

Generalized k-Labelsets Ensemble for Multi-Label and Cost-Sensitive Classification

Label powerset (LP) method is one category of multi-label learning algorithm. This paper presents a basis expansions model for multi-label classification, where a basis function is a LP classifier trained on a random k-labelset. The expansion coefficients are learned to minimize the global error between the prediction and the ground truth. We derive an analytic solution to learn the coefficient...

متن کامل

A Study on Threshold Selection for Multi-label Classification

Multi-label classification is useful for text categorization, multimedia retrieval, and many other areas. A commonly used multi-label approach is the binary method, which constructs a decision function for each label. For some applications, adjusting thresholds in decision functions of the binary method significantly improves the performance, but few studies have been done on this subject. This...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Learning Extreme Multi-label Tree-classifier via Nearest Neighbor Graph Partitioning

Web scale classification problems, such as Web page tagging and E-commerce product recommendation, are typically regarded as multi-label classification with an extremely large number of labels. In this paper, we propose GPT, which is a novel tree-based approach for extreme multi-label learning. GPT recursively splits a feature space with a hyperplane at each internal node, considering approxima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJMDEM

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010